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This paper outlines how our highly efficient, power-aware supercomputer called Green Destiny and
our open-source parallelization of BLAST called mpiBLAST combine to create a bit of “bioinfomagic.”
Green Destiny, featured in The New York Times and winner of a 2003 R&D 100 Award, revolutionized
high-performance computing by re-defining performance to focus on issues of efficiency, reliability, and
availability. Green Destiny is a 240-processor supercomputer that operates at a peak rate of 240 billion
floating-point operations per second (or 240 gigaflops) but fits in six square feet and sips as little as
3.2 kilowatts of power. Consequently, it does not require any special infrastructure to operate, i.e.,
no cooling, no raised floor, no air filtration, and no humidification control. These attributes resulted
in interest from several pharmaceutical and bioinformatics institutions, which likewise did not have
special infrastructure to house traditional supercomputing clusters.

Subsequent interactions with these pharmaceutical and bioinformatics institutions led to the birth
of mpiBLAST, an open-source parallelization of BLAST that achieves super-linear speed-up via a
technique called database segmentation. Database segmentation allows each computing node to search
a smaller portion of the database (one that fits entirely in memory), thus eliminating disk I/O and
vastly improving performance. When used in concert with Green Destiny, we demonstrate that a
300-kB BLAST query that takes nearly one full day to complete on a traditional PC or workstation
takes only minutes on Green Destiny.

1. THE ORIGIN OF GREEN DESTINY & THE BIRTH OF mpiBLAST

In the summer of 2001, my research team — RADIANT: Research and Development in Advanced
Network Technology — was faced with a dilemma. When running distributed network simulations on
our 128-processor tranditional supercomputing cluster (i.e., Beowulf cluster [1]) during the summer
heat wave of 2001 in a dusty warehouse that routinely reached 90°F (32°C), the traditional Beowulf
cluster failed on a weekly basis, and oftentimes, more frequently than that. (This summer heat wave
of 2001 was also the one that caused rolling brownouts in California.) These unscheduled failures
easily resulted in thousands of dollars of lost productivity per week. For instance, in the typical case,
system administrators would spend upwards of a half-day to diagnosis and repair problems with the
cluster. And when repairs required new hardware, administrators would boot up the working portion
of the cluster for use and then later shut it down for repair when the new hardware came in. From
the applications standpoint, network simulations would have to be re-started. Clearly, the team could
not continue operating in such an inefficient manner.

On a related note, Table 1 shows that the problem with downtime is even more insidious for
business services that routinely rely on a web-server or compute-server farm (i.e., embarrassingly
parallel variations of a Beowulf cluster), particularly given the fact that 65% of information technology
managers report that their web sites were unavailable to customers over a six-month sampling period
and that 25% of the web sites experienced three or more outages in the six-month period [2].
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Table 1
Estimated Costs of an Hour of Server Downtime for Business Services
(Source: Contingency Planning Research, Inc.)

’ Service \ Cost of One Hour of Downtime ‘
Brokerage Operations $6,450,000
Credit Card Authorization $2,600,000
Amazon.com $275,000
Ebay $225,000
Package Shipping Services $150,000
Home Shopping Channel $139,000

To address this problem with downtime, we endeavored to research, develop, and integrate a low-
power, always-available Beowulf cluster called Green Destiny [3-5] to address issues of efficiency,
reliability, and availability. Green Destiny is a 240-processor supercomputer that operates at a peak
rate of 240 billion floating-point operations per second (or 240 gigaflops) but fits in six square feet
and sips as little as 3.2 kilowatts of power (or roughly 10 times less power than a traditional cluster).
Because Green Destiny runs so cool, it does not require any special infrastructure to operate, i.e., no
cooling, no raised floor, no air filtration, and no humidification control. Furthermore, in its lifetime,
the cluster has never failed.

Consequently, the above attributes resulted in significant interest from several pharmaceutical and
bioinformatics institutions, who likewise did not have special infrastructure to house traditional su-
percomputing clusters. Subsequent discussions revolved around the fact that these institutions relied
heavily on a tool called “BLAST: Basic Local Alignment Sequence Tool,” a ubiquitous sequence
database-search tool used in molecular biology. (In general, BLAST takes a query DNA or amino
acid sequence and searches for similar sequences in a database of known sequences. At the completion
of the search, BLAST reports the statistical significance of the similarities between the query and the
sequences in the database.) To improve the throughput of BLAST, most of these institutions used
traditional Beowulf clusters in order to run multiple instantiations of the sequential BLAST code.
Those that were more adventuresome looked into parallelizing the sequential BLAST code [6-12].
Ultimately, however, all the institutions have been hampered by frequent failures in their traditional
Beowulf clusters (due to overheating) as well as by poor parallelizations of BLAST. These hinderances
appropriately set the stage for Green Destiny and mpiBLAST, respectively.

Virtually all parallel implementations rely on a technique called query segmentation, resulting
in nearly linear speed-up. A few implementations, including our own open-source implementation
dubbed mpiBLAST, employ a technique that we call database segmentation [13-16]. However, our
implementation leverages the ubiquitously accepted NCBI implementation of BLAST and delivers
super-linear speed-up while simultaneously being free and open source. As a result, since its release
in early 2003, mpiBLAST has been downloaded well over 4000 times.

The remainder of this paper presents a brief overview of BLAST, followed by details about the
existing techniques to parallelize BLAST as well as the technique used in mpiBLAST, and a perfor-
mance evaluation of mpiBLAST, our open-source parallelization of BLAST using the ubiquitous MPI
(Message Passing Interface) [19].

2. AN OVERVIEW OF BLAST

BLAST searches a query sequence containing nucleotides (DNA) or peptides (amino acids) against
a database of known nucleotide or peptide sequences. Since peptide sequences results from ribosomal
translations of nucleotides, comparisons can be made between nucleotide and peptide sequences.
BLAST provides the capability to compare all possible combinations of query and database sequence
types by translating sequences on the fly, as shown in Table 2.

In BLAST, each search type executes in nearly the same way. The BLAST search heuristic [17]
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Table 2
BLAST Search Types

| Search Name | Query Type | Database Type | Translation
blastn nucleotide nucleotide none
tblastn peptide nucleotide database
blastx nucleotide peptide query
blastp peptide peptide none
tblastx nucleotide nucleotide query and database

indexes both the query and target (database) sequence into words of a chosen size. It then searches for
matching word pairs, called hits, with a score of at least T and extends the match along the diagonal.
Gapped BLAST [18], hereafter referred to simply as BLAST, modifies the original BLAST algorithm
to increase sensitivity and decrease execution time by moving down the sequences until two hits have
been found, each with a score of at least T within A letters of each other. BLAST then performs an
ungapped extension on the second hit to generate a high-scoring segment pair (HSP). If the HSP score
is greater than a second threshold, a gapped extension is triggered simultaneously both forward and
backward. The resulting output consists of a set of local gapped alignments found within each query
sequence, the alignments score, an alignment of the query and database sequences, and a measure of
the likelihood that the alignment is a random match between the query and database.

3. RELATED WORK

In this section, we briefly describe three approaches towards parallelizing BLAST: (1) hardware
acceleration that parallelizes the comparison of a single query to a single database entry, (2) query
segmentation, and (3) database segmentation.

3.1. Hardware Acceleration

Hardware accelerators parallelize the comparison of a single query sequence to a single database
entry. Because symmetric multiprocessors (SMPs) and symmetric multithreaded systems (SMTs) can-
not support the level of parallelism required, custom hardware must be used. Singh et al. introduced
the first hardware accelerator for BLAST [12]. More recently, TimeLogic (http://www.timelogic.com)
commercialized an FPGA-based accelerator called the DeCypher BLAST hardware accelerator [11].

3.2. Query Segmentation

Query segmentation provides the most natural parallelization of BLAST by splitting up a query
(or set of queries) such that each compute node in a cluster (or each processor in an SMP) searches a
fraction of the sequence database, as shown in Figure 1. Thus, multiple BLAST searches can execute
in parallel on different queries. However, such an approach typically requires that the entire database
be replicated on each compute nodes local storage system [6,7]. If the database to be searched is
larger than core memory, then query-segmented searches suffer from the same adverse effects of disk
I/0 as in traditional BLAST. When the database fits in core memory, however, query segmentation
can achieve nearly linear scaling for all BLAST search types.

3.3. Database Segmentation

Database segmentation is an orthogonal approach to query segmentation. Whereas query segmen-
tation keeps the database intact and uses individual query segments (or sub-queries) to match against
a copy of the entire database on each node, database segmentation keeps the query intact and dis-
tributes individual database segments to each node for the query to be searched upon, as shown in
Figure 2. One of the biggest challenges of this approach is to ensure that the statistical scoring is
properly produced as it depends on the size of the database, a database that database segmentation
dutifully chops up.

Database segmentation has also been implemented in a closed-source commercial product by Tur-
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Queries

>Perilla Frutescens CDS 0001

TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC vy Orker no de S
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>Perilla Frutescens CDS 0002

GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGACC
GACGGCTCCTGCCACCCGAACATGTGATAGAAAGGAQQQQQQQQ

>Perilla Frutescens CDS 0003

TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGA
GTCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Database
>gi[3123744|dbjlAB013447.1 AB013447

TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC
>gi[221778]dbj|D00026.1[HS2HSV2P4
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGACC
GACGGCTCCTGCCACCCGAACATG

>gi[7328961|dbj|AB032155.1|AB03215452
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGA
GTCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Figure 1. Query Segmentation

Queries
>Perilla Frutescens CDS 0001 Worker nodes

TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>Perilla Frutescens CDS 0002

GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGACC
GACGGCTCCTGCCACCCGAACATGTGATAGAAAGGAQQQQQQQQ

>Perilla Frutescens CDS 0003

TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGA
GTCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Database
>gi[3123744|dbj|AB013447.1|ABO13447

TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>gi[221778|dbj|D00026. 1 [HS2HSV2P4

GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGACC
GACGGCTCCTGCCACCCGAACATG
>gi|7328961|dbj|AB032155.1JAB032154S2
GTCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Figure 2. Database Segmentation

boWorx, Inc. called TurboBLAST [13]. However, its propietary implementation only results in
linear speed-up. Recently, Mathog [16] also released an implementation of database segmentation
called parallelblast, which is composed of a set of scripts that operate in the Sun Grid Engine
(SGE)/PVM environment. Aside from requiring the SGE/PVM environment, parallelblast also dif-
fers from mpiBLAST in that it is not directly integrated with the NCBI toolkit.

4. THE mpiBLAST ALGORITHM

The mpiBLAST algorithm consists of three steps: (1) segmenting and distributing the database,
e.g., see Figure 2, (2) running mpiBLAST queries on each node, and (3) merging the results from
each node into a single output file [15].

The first step consists of a front-end node formatting the database via a wrapper around the
standard NCBI formatdb called mpiformatdb. The mpiformatdb wrapper generates the appropriate
command-line arguments to enable NCBI formatdb to format and divide the database into many
small fragments of roughly equal size. When completed, the formatted database fragments are placed
on shared storage.
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Next, each database fragment is distributed to a distinct worker node and queried by directly
executing the BLAST algorithm as implemented in the NCBI development library.

Finally, when each worker node completes searching on its fragment, it reports the results back to
the front-end node who merges the results from each worker node and sorts them according to their
score. Once all the results have been received, they are written to a user-specified output file using
the BLAST output functions of the NCBI development library. This approach to generating merged
results allows mpiBLAST to directly produce results in any format supprted by NCBI’'s BLAST,
including XML, HTML, tab-delimited text, and ASN.1.

5. PERFORMANCE EVALUATION OF mpiBLAST

In this section, we show that mpiBLAST, with its database-segmenting technique, achieves super-
linear performance gains. For instance, when increasing the number of compute nodes from 1 to 4,
mpiBLAST achieves a speed-up of nearly 10, as shown in Table 3. Overall, our reference 300-KB query
against the 5.1-GB uncompressed nt database takes 1346 minutes (or 22.4 hours) on one compute
node and less than 8 minutes on 128 nodes of Green Destiny. (A more detailed performance analysis
and evaluation can be found in [15].)

Table 3
BLAST Run Time for a 300-kB Query Against the nt Database

| # Nodes | Run Time (sec) | Speed-Up

1 80775 1.00

4 8752 9.23

8 4548 17.76
16 2437 33.15
32 1350 59.83
64 851 94.92
128 474 170.41

If one looks carefully at Table 3, the efficiency of mpiBLAST decreases as the number of nodes in-
crease. That is, if we take the “speed-up” column and divide it by the “# nodes” column, the efficiency
of mpiBLAST across four nodes is 2.31 (9.23/4) and drops all the way down to 1.33 (170.41/128) when
run across 128 nodes. The reason for this dropoff is due to the tradeoff that exists when segmenting
the database into many small fragments. There is significant overhead in searching extra fragments;
thus, the ideal database segment will typically be the largest fragment that can fit in memory and
not cause any swapping to disk. Making fragments smaller than the available memory simply adds
overhead [15].

6. CONCLUSION

In this paper, we briefly described how our energy-efficient and highly-reliable Green Destiny cluster
led to the development of mpiBLAST to create a bit of “bioinfomagic” — e.g., moving from execut-
ing on one node to four nodes resulted in nearly a ten-fold speed-up. In short, mpiBLAST is an
MPI-based [19] implementation of database segmentation for parallel BLAST searches. Its primary
contributions are that it is open source, that it routinely produces super-linear speed-up, and that it
directly interfaces with the NCBI development library to provide BLAST users with an interface and
output formats identical to the ubiquitous NCBI-BLAST.
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